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Summary

In this paper, an iterative algorithm based on the conjugate gradient method (CGM) in
combination with the boundary element method (BEM) for obtaining stable approximate
solutions to the Cauchy problem in linear elasticity is analysed. An efficient stopping criterion
for the CGM proposed by Nemirovskii in 1986 is employed and in addition the accuracy of the
iterative algorithm is improved by using a variable relaxation procedure. The numerical results
obtained confirm that the iterative BEM produces a convergent and stable numerical solution
with respect to increasing the number of boundary elements and decreasing the amount of noise
added into the input data.

1. Introduction

In most boundary-value problems in solid mechanics, the governing system of equations
(equilibrium, constitutive and kinematics equations) has to be solved with the appropriate initial
and boundary conditions for the traction and/or displacement vectors (Dirichlet, Neumann or mixed
boundary conditions). These are called direct problems and their existence and uniqueness have
been well established. Unfortunately, many engineering problems do not belong to this category. In
particular, the boundary conditions are often incomplete, either in the form of underspecified and
overspecified boundary conditions on different parts of the boundary or the solution is prescribed at
some internal points in the domain. These are inverse problems, and it is well known that they are
generally ill-posed so that the existence, uniqueness and stability of their solutions are not always
guaranteed.

Much of the literature on the solution of inverse problems has been devoted to inverse heat
transfer (1), whilst research in the field of inverse elasticity has been limited. Inverse deformation
problems have also been discussed in the field of thermoelasticity by Grysa et al. (2) and for non-
destructive measurements of plastic strains by Mura (3). Maniatty et al. (4) used simple diagonal
regularization, in conjunction with the finite element method (FEM), to determine the traction
boundary condition. Spatial regularization was introduced in conjunction with the boundary element
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method (BEM) in (5) and with the FEM in (6). Ikehata (7) showed that the material constants can
be determined in the case of Love–Kirchhoff plate theory by using the Dirichlet-to-Neumann map,
whilst Zhang et al. (8) used constraint least-squares minimization to determine the residual stress
and contact pressure. Recently, Shi and Mukherjee (9) have studied the shape optimization of a
three-dimensional linear elastic body using a variant of the BEM, namely the boundary contour
method. Other inverse problems for differential equations of elasticity can be found in (10, 11).

In this paper we apply a variational method for solving the Cauchy problem in two-dimensional
elasticity by considering the displacement on the underspecified boundary as a control in a direct
mixed well-posed problem while trying to fit the Cauchy data on the overspecified boundary. In
doing so we attempt to minimize a functional relating the discrepancies between the known and
calculated values of the displacement on the overspecified boundary following a technique similar
to that used in (12) for the Cauchy problem for the Laplace equation. We prove that this functional
is twice Fréchet differentiable and a formula for the gradient of the functional is obtained via some
appropiate adjoint problems. Since the minimization problem contains almost all the properties
of the Cauchy problem it still remains ill-posed. The conjugate gradient method (CGM), with a
stopping rule proposed by Nemirovskii (13), is therefore employed. This method is known to have
an optimal-order convergence rate (13). The numerical implementation of the CGM is based on the
BEM following a technique similar to that used in (14) for an inverse problem in which discrete
data measurements of the displacement at internal points are used to determine the underspecified
boundary data.

2. Cauchy problem in linear elasticity

Consider a linear elastic material which occupies an open bounded domain � ⊂ R
d , where d is

the dimension of the space in which the problem is posed, usually d ∈ {1, 2, 3}, and assume that �

is bounded by a surface � = ∂� ∈ C1. We also assume that the boundary consists of two parts,
� = �1 ∪ �2, where �1, �2 �= ∅ and �1 ∩ �2 = ∅. In the absence of body forces, the equilibrium
equations for d = 3 are given by (15)

∂ jσi j (u(x)) = 0, x ∈ �, (1)

where ∂ j ≡ ∂/∂x j , σi j is the stress tensor and the strain tensor εi j is given by the kinematic relations

εi j (u(x)) = 1
2 (∂ j ui (x) + ∂i u j (x)). (2)

These tensors are related by the constitutive law, namely

σi j (u(x)) = Ci jklεkl(u(x)), (3)

where Ci jkl is the elasticity tensor which, for an isotropic material, is given by

Ci jkl = G{2ν(1 − 2ν)−1δi jδkl + δikδ jl + δilδ jk}. (4)

Here G is the shear modulus, ν is Poisson’s ratio and δi j is the Kronecker delta.
If we now substitute (3) into (1), and use (2) and (4), we obtain the Lamé system

G
∂2ui (x)

∂x j∂x j
+ G

1 − 2ν

∂2u j (x)

∂xi∂x j
= 0, x ∈ �. (5)
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We now let n(x) be the outward normal vector at � and t(x) be the traction vector at a point x ∈ �

whose components are defined by ti (x) = σi j (u(x))n j (x). In the direct problem formulation,
the knowledge of the displacement and/or traction vectors on the whole boundary � gives the
corresponding Dirichlet, Neumann, or mixed boundary conditions which enables us to determine u
in �. Then, εi j can be calculated from (2) and the stress tensor is determined using (3).

Assuming that both u and t can be measured on a part of �, say �2, leads to the mathematical
formulation of an inverse problem consisting of (1) or (5) and the boundary conditions

ui (x) = ũi (x), ti (x) = t̃i (x), x ∈ �2, (6)

where ũ and t̃ are prescribed vector-valued functions. In the above formulation of the boundary
conditions (6), it can be seen that �2 is overspecified by prescribing both the displacement u|�2 = ũ
and the traction t|�2 = t̃ vectors, whilst �1 is underspecified since both u|�1 and t|�1 are unknown
and have to be determined.

This problem, termed a Cauchy problem, is much more difficult to solve both analytically and
numerically than the direct problem, since the solution does not satisfy the general conditions of
well-posedness. Although the problem may have a unique solution, it is well known (16) that this
solution is unstable with respect to small perturbations in the data on �2. Thus the problem is
ill-posed and we cannot use a direct approach, such as the Gauss elimination method, in order to
solve the system of linear equations which arises from the discretization of the partial differential
equations (1) or (5) and the boundary conditions (6). Therefore, knowing the data ũ and t̃ on the
boundary �2, we apply a variational method to the aforementioned Cauchy problem. Since the
boundary conditions on �1 are unknown and have to be determined, we consider the displacement
vector on the underspecified boundary �1 as a control for a direct problem and attempt to fit the
Cauchy data on the overspecified boundary �2 by minimizing a functional relating the known and
calculated values of the displacement vector on �2.

3. Variational formulation

Let us denote by L
2(�i ), H

s(�i ) and H
s(�) the spaces (L2(�i ))

d , (Hs(�i ))
d and (Hs(�))d ,

respectively, for d ∈ {1, 2, 3}, i = 1, 2 and some s ∈ R. Then the Cauchy problem under
investigation is given by (1) and (6), where ũ ∈ L

2(�2), t̃ ∈ L
2(�2) and u is sought in H

1/2(�). We
note that t̃ ∈ H

−1(�2) is sufficient for our method. Let us denote by γi f the trace of a function f
determined in � over �i , i = 1, 2. First we solve the direct problem

∂ jσi j (u(x)) = 0, x ∈ �,

γ1ui (x) = vi (x), x ∈ �1,

γ2(σi j (u(x))n j (x)) = t̃i (x), x ∈ �2,


 (7)

with v ∈ L
2(�1). We denote by u = u(v,̃ t) the solution to the problem (7) and aim to find

v ∈ L
2(�1) such that

Av := γ2u(v,̃ t) = ũ. (8)

To do so, we attempt to minimize the functional

J (v) = 1
2‖Av − ũ‖L2(�2)

(9)
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with respect to v ∈ L
2(�1).

We note that since v ∈ L
2(�1), t̃ ∈ L

2(�2) and the boundary � ∈ C1, there is a unique
solution u(v,̃ t) ∈ H

1/2(�) of the direct problem (7) (see (17, Chapter 2, section 7.3)). Thus,
Av = γ2u(v,̃ t) ∈ L

2(�1) and hence expression (8) is meaningful.
In what follows we need the following result on Green’s formula: for p ∈ L

2(�2), consider the
problem

∂ jσi j (ψ(x)) = 0, x ∈ �,

γ1ψi (x) = 0, x ∈ �1,

γ2(σi j (ψ(x))n j (x)) = pi (x), x ∈ �2.


 (10)

LEMMA 1. Let u and ψ be the solutions of problems (7) and (10), respectively. Then∫
�1

γ1(σi j (ψ(x))n j (x))vi (x) d�(x) +
∫

�2

pi (x)γ2ui (x) d�(x) =
∫

�2

t̃i (x)γ1ψi (x) d�(x). (11)

Proof. We note that if p ∈ L
2(�2), then ψ ∈ H

3/2(�) and hence γ1(σi j (ψ(x))n j (x)) ∈ L
2(�1).

It follows that (11) is meaningful in the classical sense. This can be proved in the framework of
distribution theory (see (17, Chapter 2, section 2.2)) but an alternative proof is given here.

Let v(n) ∈ H
1(�1) be a sequence which converges to v in the L

2(�1)-norm. We denote by
u(n) = u(v(n),̃ t) the solution of problem (7) with v = v(n). It can be proved (see (17, Chapter 2,
section 7.3)) that u(n) ∈ H

3/2(�) and u(n) → u in H
1/2(�). It follows that γ2u(n)

i → γ2ui in
L

2(�2). Since ψ ∈ H
3/2(�) and using (2) and (3), we have

0 =
∫

�

σi j (u(n)(x))n j (x)ψi (x) d�(x) −
∫

�

σi j (u(n)(x))εi j (ψ(x)) d�(x)

=
∫

�1

γ1(σi j (u(n)(x))n j (x)) γ1ψi (x) d�(x) +
∫

�2

γ2(σi j (u(n)(x))n j (x)) γ2ψi (x) d�(x)

−
∫

�

Ci jklεkl(u(n)(x))εi j (ψ(x)) d�(x). (12)

If we now substitute the boundary conditions from both problems (7) and (10) into the surface
integrals in (12), we obtain∫

�

Ci jklεkl(u(n)(x))εi j (ψ(x)) d�(x) =
∫

�2

t̃i (x)γ2ψi (x) d�(x). (13)

In a similar manner, since u(n) ∈ H
3/2(�) and using (2) and (3), we have

0 =
∫

�

σi j (ψ(x))n j (x)u(n)
i (x) d�(x) −

∫
�

σi j (ψ(x))εi j (u(n)(x)) d�(x)

=
∫

�1

γ1(σi j (ψ(x))n j (x)) γ1u(n)
i (x) d�(x) +

∫
�2

γ2(σi j (ψ(x))n j (x)) γ2u(n)
i (x) d�(x)

−
∫

�

Ci jklεkl(ψ(x))εi j (u(n)(x)) d�(x). (14)
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Using the boundary conditions from (7) and (10) in (14) gives∫
�

Ci jklεkl(ψ(x))εi j (u(n)(x)) d�(x)

=
∫

�1

γ1(σi j (ψ(x))n j (x))v
(n)
i (x) d�(x) +

∫
�2

pi (x)γ2u(n)
i (x) d�(x). (15)

From the symmetry properties of the elasticity tensor Ci jkl (15), it follows that

Ci jkl εkl(u(n)(x))εi j (ψ(x)) = Ci jkl εkl(ψ(x))εi j (u(n)(x))

and, therefore, the domain integrals in (13) and (15) are equal. Consequently, we have∫
�1

γ1(σi j (ψ(x))n j (x))v
(n)
i (x) d�(x) +

∫
�2

pi (x)γ2u(n)
i (x) d�(x) =

∫
�2

t̃i (x)γ2ψi (x) d�(x).

(16)

Letting n → ∞ in (16) we establish (11) and hence Lemma 1 is proved.

Now we are in a position to consider the variational problem. The first result concerning the
approximate controllability is as follows.

THEOREM 1. Let t̃ ∈ L
2(�2). If v varies in L

2(�1), then γ2u(v,̃ t) forms a dense set in L
2(�2).

Proof. Let η ∈ L
2(�2) be such that∫

�2

γ2ui (v,̃ t)ηi d�(x) = 0 ∀ v ∈ L
2(�1). (17)

Let ψ(0,η) be the solution of problem (10) with p = η. Then we have γ2ψ ∈ L
2(�2). From

Green’s formula (11) and expression (17) we obtain∫
�1

γ1(σi j (ψ(x))n j (x))vi (x) d�(x) =
∫

�2

t̃i (x)γ2ψi (x) d�(x) ∀v ∈ L
2(�1). (18)

Replacing v with −v in (18), we obtain

−
∫

�1

γ1(σi j (ψ(x))n j (x))vi (x) d�(x) =
∫

�2

t̃i (x)γ2ψi (x) d�(x) ∀v ∈ L
2(�1). (19)

Equations (18) and (19) imply that∫
�1

γ1(σi j (ψ(x))n j (x))vi (x) d�(x) = 0 ∀v ∈ L
2(�1)

and hence we have γ1(σi j (ψ(x))n j (x)) = 0 for x ∈ �1. Thus, ψ ∈ H
3/2(�) satisfies the problem

given by (1) and the boundary conditions γ1ψi (x) = γ1(σi j (ψ(x))n j (x)) = 0, x ∈ �1. From a
uniqueness theorem for the Cauchy problem in linear elasticity (18, Chapter 7, section 7.2; 19), it
follows that ψ ≡ 0. Thus ε(ψ) ≡ 0 and σ(ψ) ≡ 0 in � and therefore γ2(σi j (ψ(x))n j (x)) =
ηi (x) = 0, x ∈ �2. The theorem is proved.
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This theorem has important consequences; for example, we can say that the Cauchy problem
defined by (1) and (6) is solvable for almost all ũ,̃ t ∈ L

2(�2). Furthermore, we have the following
result.

COROLLARY 1.
inf

v∈L2(�1)
J (v) = 0.

THEOREM 2. The functional J (v) is twice Fréchet differentiable and is strictly convex. Moreover,
its first gradient has the form

J ′(v) = −γ1(σi j (ψ(x))n j (x)). (20)

Proof. Let h be a vector-valued function in L
2(�1) and denote by 〈·, ·〉L2(�2)

the scalar product in
the space L

2(�2). Then using (8) and (9) we have

J (v + h) − J (v) = 1
2‖γ2u(v + h,̃ t) − ũ‖2

L2(�2)
− 1

2‖γ2u(v,̃ t) − ũ‖2
L2(�2)

. (21)

The linearity of the boundary-value problems in elasticity implies the validity of the superposition
principle, so that we have u(v + h,̃ t) = u(v,̃ t) + u(h, 0), where u(h, 0) denotes the solution to the
following direct problem:

∂ jσi j (u(x)) = 0, x ∈ �,

γ1ui (x) = hi (x), x ∈ �1,

γ2(σi j (u(x))n j (x)) = 0, x ∈ �2.


 (22)

Thus (21) can be written in the following form:

J (v + h) − J (v) = 1
2‖γ2u(v,̃ t) + γ2u(h, 0) − ũ‖2

L2(�2)
− 1

2‖γ2u(v,̃ t) − ũ‖2
L2(�2)

= 〈γ2u(v,̃ t) − ũ, γ2u(h, 0)〉L2(�2)
+ 1

2‖γ2u(h, 0)‖2
L2(�2)

. (23)

Let us consider now the adjoint problem, namely

∂ jσi j (ψ(x)) = 0, x ∈ �,

γ1ψi (x) = 0, x ∈ �1,

γ2(σi j (ψ(x))n j (x)) = γ2(ui (v,̃ t)(x)) − ũi (x), x ∈ �2.


 (24)

Applying Green’s formula (11) to problems (22) and (24), we obtain

−
∫

�1

γ1(σi j (ψ(x))n j (x))hi (x) d�(x) =
∫

�2

(γ2(ui (v,̃ t)(x)) − ũi (x))γ2ui (x) d�(x)

and, consequently, from (23) we have

J (v + h) − J (v) = −
∫

�1

γ1(σi j (ψ(x))n j (x))hi (x) d�(x) + 1
2‖γ2u(h, 0)‖2

L2(�2)
. (25)

Since u(h, 0) is the solution in H
1/2(�) to problem (22), there exists a constant c > 0 such
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that ‖u(h, 0)‖H1/2(�) � c‖h‖L2(�1)
. It follows immediately that ‖γ2u(h, 0)‖2

L2(�2)
→ 0 as

‖h‖L2(�1)
→ 0 which means that the functional J (v) is Fréchet differentiable and its first gradient

is given by (20).
Consider now the problem

∂ jσi j (ϕ(x)) = 0, x ∈ �,

γ1ϕi (x) = 0, x ∈ �1,

γ2(σi j (ϕ(x))n j (x)) = γ2(ui (h, 0)(x)), x ∈ �2,


 (26)

which has a unique solution in H
3/2(�) since γ2u(h, 0) ∈ L

2(�2). If we apply Green’s formula (11)
to problems (22) and (26), we obtain∫

�2

γ2(ui (h, 0)(x))γ2(ui (h, 0)(x)) d�(x) = −
∫

�1

γ1(σi j (ϕ(x))n j (x))hi (x) d�(x) (27)

and it follows that the functional J (v) is twice Fréchet differentiable and its second gradient is given
by the formula

J ′′(v) · h = −γ1(σi j (ϕ(x))n j (x)).

In order to prove that the functional J (v) is strictly convex, we first observe that J (v) is convex
since

〈J ′′(v) · h, h〉L2(�2)
= −

∫
�1

γ1(σi j (ϕ(x))n j (x))hi (x) d�(x)

and, according to (27), we have

〈J ′′(v) · h, h〉L2(�2)
=

∫
�2

|γ2(ui (h, 0)(x))|2 d�(x) = ‖γ2(ui (h, 0)(x))‖2
L2(�2)

� 0.

Further, if 〈J ′′(v) · h, h〉L2(�2)
= 0, then γ2(ui (h, 0)(x)) = 0 and it follows that u(h, 0) satisfies the

problem
∂ jσi j (u(h, 0)(x)) = 0, x ∈ �,

γ2(ui (h, 0)(x)) = 0, x ∈ �2,

γ2(σi j (u(h, 0)(x))n j (x)) = 0, x ∈ �2.




From a theorem on the uniqueness of the Cauchy problem in linear elasticity, we have that
u(h, 0) ≡ 0 in �. Hence h ≡ 0 and the functional J (v) is strictly convex.

4. Conjugate gradient method

As we can calculate the gradient of the functional J (v) via the adjoint problem (24), we can now
apply the CGM with a stopping rule, as proposed by Nemirovskii (13). First, we note that, by the
superposition principle, u(v,̃ t) = u(v, 0) + u(0,̃ t).

We define the linear operator
A0v := γ2u(v, 0)

and thus we have the following linear equation, which is equivalent to (8):

A0v = γ2(u(v,̃ t) − u(0,̃ t)) = γ2u(v,̃ t) − γ2u(0,̃ t) = ũ − γ2u(0,̃ t) =: u.
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Suppose that instead of ũ we have only an approximation, say ũε ∈ L
2(�2) such that

‖̃u − ũε‖L2(�2)
� ε. (28)

In order to solve the Cauchy problem given by (1) and (6) with noisy data ũε, we need to compute
A∗

0(A0v − uε), where A∗
0 is the adjoint of the operator A0 and uε is given by

uε := ũε − γ2u(v, 0).

However, we observe that this is nothing else than the gradient (20) of the functional (9). Thus the
CGM applied to our problem has the form of the following algorithm.

Step 1. Set k = 0. Choose u(0) ∈ L
2(�2).

Step 2. Solve the direct problem

∂ jσi j (u(x)) = 0, x ∈ �,

γ1ui (x) = u(k)
i (x), x ∈ �1,

γ2(σi j (u(x))n j (x)) = t̃i (x), x ∈ �2,




to determine the residual r(k) = Au(k) − ũε = γ2u(u(k),̃ t) − ũε.

Step 3. Solve the adjoint problem

∂ jσi j (ψ(x)) = 0, x ∈ �,

γ1ψi (x) = 0, x ∈ �1,

γ2(σi j (ψ(x))n j (x)) = r (k)
i (x), x ∈ �2,




to determine the gradient g(k): g(k)
i (x) = γ1(σi j (ψ(0, r(k))(x))n j (x)). Calculate βk and d(k) as

follows:
k = 0 : βk = 0, d(k) = −g(k),

k � 1 : βk = ‖g(k)‖2
L2(�1)

‖g(k−1)‖2
L2(�1)

, d(k) = −g(k) + βkd(k−1).

Step 4. Solve the direct problem

∂ jσi j (u(x)) = 0, x ∈ �,

γ1ui (x) = d(k)
i (x), x ∈ �1,

γ2(σi j (u(x))n j (x)) = 0, x ∈ �2,




to determine A0d(k) = γ2u(d(k), 0). Compute αk and u(k+1) as follows:

αk = ‖g(k)‖2
L2(�1)

‖A0d(k)‖2
L2(�2)

, u(k+1) = r(k) + αkd(k).
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Step 5. Set k = k + 1. Repeat step 2 until a stopping criterion is achieved.

As a stopping criterion we choose the one suggested by Nemirovskii (13), namely choose the first
k ∈ N such that

‖r(k)‖L2(�2)
� δε, (29)

where δ > 1 is a constant which can be taken heuristically to be 1·1, as suggested by Hanke and
Hansen (20). It follows from Nemirovskii’s result that the above iterative procedure converges with
an optimal convergence rate to the exact solution of the problem as the noise level tends to zero.

We note that in step 2 we have the following relations:

r(k+1) = Au(k+1) − ũε = (A0u(k+1) + γ2u(0,̃ t)) − ũε

= A0(u(k) + αkd(k)) + γ2u(0,̃ t) − ũε = αk(A0d(k)) + (A0u(k) + γ2u(0,̃ t)) − ũε

= αk(A0d(k)) + Au(k) − ũε = αk(A0d(k)) + r(k).

Thus we obtain that r(k+1) = r(k) + αk(A0d(k)) for k � 0 and we note that we have in fact to solve
only the two direct problems in steps 3 and 4 at every iteration, except for that to determine r(0).

5. Boundary element method

The Lamé system (5) in the two-dimensional case can be formulated in integral form with the aid
of the Second Theorem of Betti (21), namely

Ci j (x)u j (x) + −
∫

�

Ti j (y, x)u j (y) d�(y) =
∫

�

Ui j (y, x)t j (y) d�(y) (30)

for i, j = 1, 2, x ∈ � = � ∪ �, and y ∈ �, where the first integral is taken in the sense of the
Cauchy principal value, Ci j (x) = 1 for x ∈ � and Ci j (x) = 1

2 for x ∈ � (smooth), and Ui j and Ti j

are the fundamental displacements and tractions for the two-dimensional isotropic linear elasticity
given by

Ui j (y, x) = C1

(
C2δi j ln r(y, x) − ∂r(y, x)

∂yi

∂r(y, x)

∂y j

)
,

Ti j (y, x) = C3

r(y, x)

[(
C4δi j + 2

∂r(y, x)

∂yi

∂r(y, x)

∂y j

)
∂r(y, x)

∂n(y)

− C4

(
∂r(y, x)

∂yi
n j (y) − ∂r(y, x)

∂y j
ni (y)

)]
.

Here r(y, x) represents the distance between the collocation point x and the field point y and
the constants C1, C2, C3 and C4 are given by C1 = −1/[8πG(1 − ν)], C2 = 3 − 4ν, C3 =
−1/[4π(1 − ν)] and C4 = 1 − 2ν, where ν = ν for plane strain and ν = ν/(1 + ν) for plane
stress. It should be noted that in practice (30) can rarely be solved analytically and thus a numerical
approximation is required. A BEM with constant boundary elements (22) is employed in order to
solve the intermediate mixed well-posed boundary-value problems resulting from the iterative CGM
adopted.
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6. Numerical results and discussion

In this section we illustrate the numerical results obtained using the conjugate gradient and the
BEMs according to the algorithm described in section 4. In addition we investigate the convergence
of the algorithm with respect to the mesh size discretization and the number of iterations when the
Cauchy data is exact and the stability of the algorithm when the Cauchy data is perturbed by noise.

6.1 Example

In order to present the performance of the numerical method proposed, we solve the Cauchy problem
in a smooth geometry, namely the unit disc � = {x = (x1, x2) | x2

1 + x2
2 < 1}. We assume that the

boundary � = {x = (x1, x2) | x2
1 + x2

2 = 1} of the solution domain � is divided into two disjoint
parts, namely �1 = {x = (x1, x2) | x ∈ �, α1 � θ(x) � α2} and �2 = {x = (x1, x2) | x ∈ �, 0 �
θ(x) < α1} ∪ {x = (x1, x2) | x ∈ �, α2 < θ(x) � 2π}, where θ(x) is the angular polar coordinate
of x and αi , i = 1, 2, are specified angles in the interval (0, 2π). In order to illustrate typical
numerical results we have taken α1 = π/4 and α2 = 3π/4 and we assume that �2 is overspecified
by the prescription of both the displacement and the traction vectors while �1 is underspecified,
with both the displacement and the traction vectors unknown.

We consider an isotropic linear elastic medium characterized by the material constants
G = 3·35 × 1010 N m−2 and ν = 0·34 corresponding to a copper alloy. The following analytical
solution in displacements:

u(an)
i (x) = 1 − ν

2G(1 + ν)
σ0 xi , i = 1, 2, (31)

in the domain �, corresponds to a uniform hydrostatic stress state given by

σ
(an)
i j (x) = (σ0/σ) δi j , i, j = 1, 2. (32)

In (31) and (32), G and σ0 = 1·5 × 1010 N m−2 have been non-dimensionalized with
σ = 1010 N m−2. The Cauchy problem considered can be written as

∂ jσi j (u(x)) = 0, x ∈ �,

σi j (u(x))n j (x) = t (an)
i (x), x ∈ �2,

ui (x) = u(an)
i (x), x ∈ �2,




where t (an)
i (x) = σ

(an)
i1 (x)n1(x) + σ

(an)
i2 (x)n2(x) is the i th component of the traction vector t(an) =

(t (an)
1 , t (an)

2 ) corresponding to the uniform hydrostatic stress state (32).

6.2 Initial guess

An arbitrary vector-valued function u(0) ∈ L
2(�1) × L

2(�1) may be specified as an initial guess
for the displacement vector on �1, but in order to improve the rate of convergence of the iterative
procedure we have chosen a vector-valued function which ensures the continuity of the displacement
vector at the endpoints of �1 and which is also linear with respect to the angular polar coordinate θ .
For the test example considered, this initial guess is

u(0)
i (x) = α2 − θ(x)

α2 − α1
u(an)

i (x1) + θ(x) − α1

α2 − α1
u(an)

i (x2)
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Table 1 Optimal iteration numbers and errors for N ∈ {40, 80, 160, 320} boundary elements and
input data u(an)|�2

N 40 80 160 320

ε 3·00 × 10−3 1·28 × 10−3 5·86 × 10−4 2·78 × 10−4

kopt 5 5 15 41
eu(kopt) 1·00 × 10−2 8·94 × 10−3 5·04 × 10−3 4·12 × 10−3

Eu(kopt) 1·43 × 10−3 4·05 × 10−4 1·75 × 10−4 5·47 × 10−5

kN 2 2 5 5
eu(kN ) 1·35 × 10−2 9·19 × 10−3 5·86 × 10−3 5·14 × 10−3

Eu(kN ) 2·60 × 10−3 1·33 × 10−3 3·34 × 10−4 2·35 × 10−4

for i = 1, 2, where αi = θ(xi), xi are the endpoints of �1, and the choice of α1 = π/4 and
α2 = 3π/4 also ensures that the initial guess is not too close to the exact values u(an)

i (x).

6.3 Accuracy

In order to investigate the convergence of the algorithm, at every iteration we evaluate the errors

eu(k) = ‖u(k) − u(an)‖L2(�1)
and Eu(k) = ‖Au(k) − u(an)‖L2(�2)

,

where u(k) is the displacement vector on �1 retrieved after k iterations, the operator A is given
by (8) and each iteration consists of solving three direct mixed well-posed problems as described
in section 4. These errors are plotted in Fig. 1 for various numbers of boundary elements N ∈
{40, 80, 160, 320}. From Fig. 1a it can be seen that the error eu decreases up to a specific iteration
after which it starts increasing. It should be noted that the pattern of the convergence process, with
sharp decreases followed by flat portions, is common to conjugate gradient-type methods. The error
Eu keeps decreasing as the number of iterations k increases, as can be seen in Fig. 1b, but there is a
threshold of optimality at which the iterative process should be stopped according to Nemirovskii’s
rule.

In all the tables presented in this paper, ε represents the total amount of noise included in the
input data, kopt represents the optimal iteration number for which the accuracy norm eu becomes
a minimum, and kN represents the optimal iteration number given by Nemirovskii’s rule (29).
Table 1 shows the optimal iteration numbers kopt and kN and the accuracy norms eu and Eu

for N ∈ {40, 80, 160, 320} boundary elements when the analytical solution u(an)|�2 is used as

additional data. In this case ũ = u(an)|�2 , and ũε = u(num)
N |�2 is the BEM numerical solution of the

problem (33) with N boundary elements. Thus, in Table 1, ε = ε(N ) = ‖u(an) − u(num)
N ‖

L2(�2)
.

It can be observed that although the differences between kopt and kN increase as the number of
boundary elements increases, the difference between the corresponding errors is small.

We note that the CGM algorithm described in section 4 is convergent as we increase the number
of boundary elements, as can be seen in Fig. 2 which presents the evolution of the numerical solution
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Fig. 1 (a) The error eu obtained for N = 40 (− · · · · −), N = 80 (− · · −), N = 160 (−−) and
N = 320 ( ) boundary elements and input data u(an)|�2 . (b) The error Eu retrieved for N = 40 (− · · · · −),

N = 80 (− · · −), N = 160 (−−) and N = 320 ( ) boundary elements and input data u(an)|�2
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Fig. 2 The analytical solution u(an)
2 |�1 ( ) and the numerical solution u(num)

2 |�1 obtained for
N = 40 (− · · · · −), N = 80 (− · · −), N = 160 (− − −−) and N = 320 ( ) boundary elements and

input data u(an)|�2

for the x2 component of the displacement on �1 for various numbers of boundary elements N ∈
{40, 80, 160, 320}. The behaviour of the x1 component of the displacement vector is similar to that
of the x2 component and therefore it has not been presented here. It should be noted that as N
increases, ε decreases and the numerical solution approximates better the exact solution, and hence
the errors decrease as expected. However, the errors in predicting t on the underspecified boundary
�1 are still large since we are using as input data the analytical u(an)|�2 which is contaminated by
numerical noise.

An alternative way to generate the Cauchy data on �2 is to use the numerical solution u(num)|�2

of the direct problem

∂ jσi j (ux)) = 0, x ∈ �,

γ1ui (x) = u(an)
i (x), x ∈ �1,

γ2(σi j (u(x))n j (x)) = t (an)
i (x), x ∈ �2,


 (33)

and this procedure can also be used to fabricate the input data when no exact solution to the Cauchy
problem is available. In this case both eu and Eu decrease as the number of iterations k increases
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(Fig. 3), and the sequence {u(k)}k�0 of approximation functions for u|�1 converges exactly to the
analytical solution u(an)|�1 , as can be seen in Fig. 4. However, the numerical solution for the traction
vector deviates from the exact solution, especially near the ends of the underspecified boundary �1,
where the constant BEM changes to mixed boundary conditions and, therefore, it has not been
presented here. Similar results have been reported in (12) for the heat flux in the case of the
conjugate gradient–boundary element solution to the Cauchy problem for Laplace’s equation. It
is well known (23, 24) that the gradient of the displacement vector u possesses singularities at
the boundary points, where the data changes from displacement boundary conditions to traction
boundary conditions, even if the displacement and the traction data are of class C∞. Consequently,
the classical solution for the displacement vector u cannot be smooth, although its smoothness
can be improved if the displacement and the traction data are required to satisfy an increasing
number (increasing with smoothness) of additional conditions; see also (25). Nevertheless, in the
numerical implementation one may use linear boundary elements to enforce a smooth displacement
across the junctions �1 ∩ �2 and this will be investigated in a future work. In any case, retrieving
higher-order derivatives (tractions) from noisy lower-order derivatives (displacements) is in itself an
unstable problem and regularization procedures, such as the truncated singular value decomposition
(TSVD) (26), can be employed. Alternatively, the inclusion of a relaxation factor in the iterative
CGM is investigated next.

6.4 Variable relaxation factor

Here we investigate the relaxation marching condition

u(k+1) = ρ(r(k) + αkd(k)) + (1 − ρ)u(k) (34)

when passing from step 4 to step 5 of the algorithm described in section 4, where ρ is a relaxation
parameter to be prescribed.

By a thorough inspection of the numerical solution for the displacement vector on �1, obtained
after various numbers of iterations without relaxation, we noticed at the endpoints of the
underspecified boundary that the rate of convergence is higher than elsewhere on �1. The high
rate of movement of the numerical displacement at the endpoints of �1, in comparison with its
rate of movement elsewhere on the underspecified boundary, suggests the introduction of a variable
relaxation factor ρ = ρ(θ(x)) which is small at the endpoints of �1 and has a maximum value, say
A, in the middle of �1, which is the region of the highest ill-posedness, that is, the farthest away
from �2 where the Cauchy data is prescribed. Based on this discussion, for the circular geometry
considered in section 6.1, the variable relaxation factor was chosen as (27)

ρ(θ(x)) = A sin π

(
θ(x) − α1

α2 − α1

)
, (35)

where A ∈ (0, 2]. In all the following figures and tables, we present more accurate estimates of the
solution obtained using the variable relaxation factor given by (35) with A = 2·0, although similar
results can be obtained with A ∈ (0, 2].

It should be mentioned that unlike in Fig. 1, when using the variable relaxation factor given
by (35), both eu and Eu decrease smoothly as the number of iterations k increases; see Fig. 5.
Although not illustrated, it is reported that when k is sufficiently large then the error eu shown in
Fig. 5a for N = 160 will become smaller than the error eu for N = 80; similarly for the error Eu
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Fig. 3 (a) The error eu obtained for N = 40 (− · · −), N = 80 (−−) and N = 160 ( ) boundary elements
and input data u(num)|�2 . (b) The error Eu obtained for N = 40 (− · · −), N = 80 (−−) and N = 160 ( )

boundary elements and input data u(num)|�2
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Fig. 4 The analytical solution u(an)
2 |�1 ( ) and the numerical solution u(num)

2 |�1 obtained for N = 40

(− · · · · −), N = 80 (− · · −) and N = 160 (−−) boundary elements and input data u(num)|�2

(Fig. 5b). Table 2 shows the optimal iteration number kN according to the stopping criterion (29) for
N ∈ {40, 80, 160} boundary elements and variable relaxation factor with amplitude A = 2·0 when
the analytical solution u(an)|�2 is used as additional data. From Tables 1 and 2 it can be seen that eu

is smaller and, consequently, the numerical solution u(num)|�1 approximates better the exact solution
u(an)|�1 when using the variable relaxation factor (35). However, since Eu is larger it follows that
more iterations are needed before the algorithm is stopped. This improvement in accuracy can be
seen by comparing Figs 2 and 6. This comparison also shows that the numerical solution becomes
smoother when relaxation is used. Finally, from both Figs 2 and 6 it can be seen that the numerical
solution is convergent to the exact solution as N increases.

6.5 Stability of the algorithm

The stability of the numerical method proposed has been investigated by perturbing the initial
data u|�2 as ui = ui + δui , where δui is a Gaussian random variable with mean zero and
standard deviation σ = (p/100) max�2 |ui |, generated by the NAG subroutine G05DDF, and p
is the percentage of additive noise included in the input data u|�2 in order to simulate the inherent
measurements errors.

Figure 7 shows the numerical displacement u(num)
2 |�1 obtained for N = 80 and variable relaxation
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Fig. 5 (a) The error eu obtained for N = 40 (− · · −), N = 80 (−−) and N = 160 ( ) boundary elements,
variable relaxation factor with amplitude A = 2·0 and input data u(an)|�2 . (b) The error Eu obtained for
N = 40 (− · · −), N = 80 (−−) and N = 160 ( ) boundary elements, variable relaxation factor with

amplitude A = 2·0 and input data u(an)|�2
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Fig. 6 The analytical solution u(an)
2 |�1 ( ) and the numerical solution u(num)

2 |�1 obtained for N = 40
(− · · · · −), N = 80 (− · · −) and N = 160 (−−) boundary elements, variable relaxation factor with

amplitude A = 2·0 and input data u(an)|�2

factor (35) with A = 2·0, when the Cauchy data on �2 is taken to be the numerical solution u(num)|�2

of the direct problem (33) to which various amounts of noise p ∈ {0, 1, 2} have been added. From
this figure and from the optimal iteration numbers and the errors presented in Table 3, it can be seen
that as p decreases the numerical solution approximates better the exact solution, whilst at the same
time remaining stable.

7. Conclusions

In this paper we have formulated the Cauchy problem for the Lamé system in a variational form
where only weak requirements for the Cauchy data are required. Consequently, the solution of
the direct problems, as well as the associated adjoint problems, are defined in a weak sense and
a mathematical analysis has been undertaken. The variational approach for solving the Cauchy
problem in elasticity needs the gradient of the minimization functional, which is provided by the
solution of the adjoint problem.

Due to the explicit representation of the gradient, the CGM was employed to solve the Cauchy
problem numerically. The algorithm proposed consists of solving three direct mixed well-posed
problems for the Lamé system at every iteration but because of the linearity of the problem only



THE CAUCHY PROBLEM IN ELASTICITY 245

Table 2 Optimal iteration numbers and errors for N ∈ {40, 80, 160} boundary elements, variable
relaxation factor with amplitude A = 2·0 and input data u(an)|�2

N 40 80 160

ε 3·00 × 10−3 1·28 × 10−3 5·86 × 10−4

kN 13 59 337
eu(kN ) 6·17 × 10−3 3·85 × 10−3 3·50 × 10−3

Eu(kN ) 3·29 × 10−3 1·41 × 10−3 6·44 × 10−4

Table 3 Optimal iteration numbers and errors for N = 80 boundary elements, variable relaxation
factor with amplitude A = 2·0 and various amounts p ∈ {0, 1, 2} of noise added into the input data

u(num)|�2

p 0% 1% 2%

ε 0·00 2·73 × 10−3 5·58 × 10−3

kN ∞ 60 24
eu(kN ) 2·42 × 10−3 3·21 × 10−3 6·11 × 10−3

Eu(kN ) 4·13 × 10−4 3·06 × 10−3 4·09 × 10−3

two direct solutions are required at every iteration. In combination with Nemirovskii’s stopping
criterion, the CGM is known to be of optimal order when the data is sufficiently smooth. The use
of a variable relaxation factor increased the accuracy of the numerical solution. The numerical
implementation of the CGM is accomplished by using the BEM, which requires the discretization
of the boundary only. Cauchy problems are inverse boundary-value problems and thus the BEM is
a very suitable method for solving such improperly posed problems.

From the discussion of the results obtained for a typical example, it can be concluded that the
CGM with an appropriate stopping rule together with the BEM produce a convergent, stable and
consistent numerical solution with respect to increasing the number of boundary elements and
decreasing the amount of noise added into the input Cauchy data.
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Fig. 7 The analytical solution u(an)
2 |�1 ( ) and the numerical solution u(num)

2 |�1 obtained for N = 80
boundary elements, variable relaxation factor with the amplitude A = 2·0 and various amounts of noise

p = 0% (−−), p = 1% (− · · −) and p = 2% (− · · · · −) added into the input data u(num)|�2

of Applied Mathematics at the University of Leeds for all their encouragement in performing this
research work.

References

1. J. V. Beck, B. Blackwell and C. R. St Clair, Inverse Heat Conduction: Ill-posed Problems
(Wiley-Interscience, New York 1985).

2. K. Grysa, J. Cialkowski and H. Kaminski, An inverse temperature field problem of the theory
of thermal stresses, Nucl. Eng. Des. 64 (1981) 169–184.

3. T. Mura, A new NDT: evaluation of plastic strain in bulk from displacements on surfaces, Mech.
Res. Commun. 12 (1985) 243–248.

4. A. Maniatty, N. Zabaras and K. Stelson, Finite element analysis of some elasticity problems, J.
Eng. Mech. 115 (1989) 1302–1316.

5. N. Zabaras, V. Morellas and D. Schnur, Spatially regularized solution of inverse elasticity
problems using the BEM, Commun. Appl. Numer. Meth. 5 (1989) 547–553.

6. D. Schnur and N. Zabaras, Finite element solution of two-dimensional elastic problems using
spatial smoothing, Int. J. Numer. Meth. Eng. 30 (1990) 57–75.



THE CAUCHY PROBLEM IN ELASTICITY 247

7. M. Ikehata, An inverse problem for the plate in the Love–Kirchhoff theory, SIAM J. Appl. Math.
53 (1993) 942–970.

8. F. Zhang, A. J. Kassab and D. W. Nicholson, A boundary element inverse approach for
determining the residual stress and contact pressure, Boundary Elements XVII (ed. C. A.
Brebbia et al.; WIT Press, Southampton, Boston 1995) 331–338.

9. X. Shi and S. Mukherjee, Shape optimization in three-dimensional linear elasticity by the
boundary countour method, Eng. Anal. Bound. Elem. 23 (1999) 627–637.

10. S. Kubo, Inverse problems related to the mechanics and fracture of solids and structures, JSME
Int. J. 31 (1988) 157–166.

11. V. G. Yakhno, Inverse Problems for Differential Equations of Elasticity (Novosibirsk, Nauka
Sibirsk. Otdel 1990) (Russian).
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